If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40-34x+3x^2=0
a = 3; b = -34; c = +40;
Δ = b2-4ac
Δ = -342-4·3·40
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-26}{2*3}=\frac{8}{6} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+26}{2*3}=\frac{60}{6} =10 $
| -10k-(-9k)=20 | | -.3(10x+20=-.6-3x | | x−102=−7 | | -3y-5=-4y-3 | | 6x-11=-2x+14 | | d/2+11=22 | | 3(2x-x)+5(-7x+2)=-60 | | 3(2-x)+5(-7x+2)=60 | | 7(v-1)-1=-4(-6v+5)-9v | | -10k—9k=20 | | -10p+9p+8=12 | | 4)1−r=−5 | | -1/2x+16=2(1/4x+8) | | 10r-9=5r+6 | | -1+-3t=14 | | 3^15x+30=9x+60 | | 2z+2=18 | | 12x-2x-12=6+9x | | -2=-2(2p+4)-3(2p-2)-9p | | 5x/3x=0 | | 2x+9=6x-36 | | 4.57x+54+2.50x=x | | x-22+5x-86=180° | | 3y-32=14 | | (7.9y−9.8=) | | .045x+.07(x-500)=511.25 | | -3(4p+3)=43-4(6p+1 | | 5x-3(2-x)=30 | | x-22+5x-86=180 | | 5(u-76)=35 | | 8.29−10.5k=–19.53−13.1k | | 3x+7x+40=180° |